DiRA-Discriminative, Restorative, and Adversarial Learning for Self-supervised Medical Image Analysis

2022/07/26 Paper Read

论文阅读系列–自监督学习篇

1. DiRA: Discriminative, Restorative, and Adversarial Learning for Self-supervised Medical Image Analysis


一句话摘要: 整合了 Discriminative learning, restorative learning, and adversarial learning

论文之我问:

1.1 这个论文的动机是什么

众所周知,计算机视觉中的自监督学习有Discriminative learning, restorative learning, and adversarial learning,这三种都给自监督学习提供了很大的帮助。但是,当下研究忽视了这三者之间的协同效应(1+1+1)。

picture not found

1.2 这篇论文的研究框架是什么样的

picture not found

全新Loss设置: \(L = \lambda _ { d i s } * L _ { d i s } + \lambda _ { r e s } * L _ { r e s } + \lambda _ { a d v } * L _ { a d v }\)

其中:

\[L _ { \text { dis } } = \ell ( z _ { 1 } , z _ { 2 } )\\ L _ { r e s } = E _ { x } \operatorname { dist } ( x _ { 1 } , x _ { 1 } ^ { \prime } )\\ L _ { a d v } = E _ { x } [ \log D _ { \phi } ( x _ { 1 } ) ] + E _ { x } [ \log ( 1 - D _ { \phi } ( x _ { 1 } ^ { \prime } ) ) ]\]

具体解释: \(\ell ( z _ { 1 } , z _ { 2 } )\) 表示距离/相似度

1.3 这篇论文的实验效果

picture not found

2D对比的使用了:

  • 对比模型: MoCov2, Barlow Twins, SimSiam
  • 数据集: ChestXray14
  • 模型架构: 2D U-net with ResNet-50
  • 超参设置:
    • 优化器: Adam
    • $L_{res}$: MSE损失
    • $D _ { \phi }$ : four convolutional layers with the kernel size of 3×3
    • batch size: 256
  • 设备: 4 Nvidia V100 GPUs
  • $\lambda_{res},\lambda_{adv},\lambda_{dis}$ : 10, 0.001, 1
  • input images: 224×224
  • learning rate: 2e-4 and (β1, β2) = (0.5, 0.999)

3D对比使用了:

  • 对比模型:TransVW
  • 数据集: 623 chest CT scans in the LUNA
  • 模型架构: 3D U-net + classification head
  • 超参设置:
    • 优化器: Adam
    • $L_{res}$: MSE损失
    • $D _ { \phi }$ : four convolutional layers with the kernel size of 3×3×3
    • batch size: 256
  • 设备: 4 Nvidia V100 GPUs
  • $\lambda_{res},\lambda_{adv},\lambda_{dis}$ : 100, 1, 1
  • epoch: 200
  • learning rate: 1e-3

Tasks:

  • ChestX-ray14, CheXPert [30], SIIM-ACR [1], and NIH Montgomery [31] for 2D models,

  • LUNA, PE-CAD [41], LIDC-IDRI [2], LiTS [5], and BraTS [4] for 3D models

picture not found
picture not found

1.4 代码参考

https://github.com/JLiangLab/DiRA.*

参考文献

  1. DiRA

  2. TransVW

  3. MoCov2

  4. Barlow Twins

  5. SimSiam

Search

    B站主页

    博士的沙漏

    Table of Contents